o ® U
S = O

Creating a Code Review
Culture



Code review 1s useful



Code review provides

a means of ensuring code quality



Code review provides

a communication platform



Code review provides

an opportunity to teach



A code review culture
is useful



Culture

"the set of shared attitudes, values,
goals, and practices that characterizes an
institution or organization” - Merriam
Webster



Agenda:

Examine the practices that contribute to a
strong code review culture from the
perspective of...

e Organizations
e Authors
® Reviewers



Organizations



Be intentional about
your culture



Be intentional about
your culture

by communicating the culture



Be intentional about
your culture

by establishing a community of experts



Be intentional about
your culture

by developing new experts



Be intentional about
your culture

by training code reviewers



Code authors



Make the reviewer's
life easier



Make the reviewer's
life easier

by communicating context



whilelmallocO0 commented just now

No description provided.



a julia-stripe commented on Sep 19, 2017 Contributor

What this PR does | why we need it:

Right now when you create a cronjob with a name longer than 52 characters, creation will succeed but the
cronjob controller will create Job objects with names longer than 63 characters. Jobs cannot have names
longer than 63 characters, so the cronjob will never be able to run any jobs.

Which issue this PR fixes : Fixes #50850

Special notes for your reviewer:

Release note:

Validate that cronjob names are 52 characters or less

Photo courtesy of Julia
Evans, @berk



+ def read_1ips. from_file():

whilelmallocO just now

Right now we're reading in IPs from a file. It's definitely not optimal, but it
was the quickest way to ship this functionality. If this approach adds too
much operational overhead, we can iterate by adding a Ul component.

Reply...

Resolve conversation



Make the reviewer's
life easier

by making the PR a manageable size



Vertical Slices

e ship the smallest unit of functionality
meaningful to your users
e round trip through your stack



Make the reviewer's
life easier

by automating the nits



Make the reviewer's
life easier

by knowing when to take it offline



Code reviewers



Communicate mutual
respect



Communicate mutual

respect
by knowing when to take it offline



Communicate mutual
respect

by including justification for critique



+ def read_ips_from_file():

whilelmallocO just now

use a generator here

Reply...

Resolve conversation



1 + def read_ips_from_file():

whilelmallocO just now

Since the list of IPs being read in here is likely to be really large, using a
generator would be a big performance improvement. More info on using a
generator to read in large files here:

https://stackoverflow.com/questions/519633/lazy-method-for-reading-big-file-
in-python

Resolve conversation



Communicate mutual
respect

by engaging with the author as an equal



L + package main

+
+ func main() {
+ ips := getIPs()

3 whilelmallocO just now

This IP processing code should be moved to its own package.

Reply...

Resolve conversation

Start a hew conversation

+
+ var processedIPs []ipv6

& for _, ip := range ips {

ok ipv6é := ipv6From4(ip)

+ processedIPs = append(processedIPs, ipv6)
+ }



+ package main

+

func main() {

+ ips := getIPs()

7 whilelmallocO just now

What do you think of moving the IP processing code to its own package?
That way this functionality can be reused and tested independently.

Reply...

Resolve conversation

Start a new conversation

+ var processedIPs []ipv6

+ for _, ip := range ips {

+ ipv6é := ipv6From4(ip)

<0 processedIPs = append(processedIPs, ipve6)
& }



Communicate mutual
respect

by being as thorough as the PR needs



Reviewlng 1n passes

Each pass is a theme, and some questions
to help focus on that theme



Reviewlng 1n passes

Make your own. Make a checklist.



Passes to complete
every time

If there are red flags on any of these,
resolve before adding more commentary.



Sizing up

e What is the general shape of the PR?
e Is the PR the right size?



Context

e What is this PR trying to accomplish?

e Why 1s this PR trying to accomplish
that?

e Does the PR accomplish what it says?




Relevance

e Is the change made in this PR necessary?
e Does this PR duplicate existing

functionality?
e Are there others that should be aware of

this PR?



Passes for more
in-depth review

Do these for more substantial PRs. Pick
the ones relevant to the change.



Readability

e Is the change reasonably understandable
by other humans with little/no prior
experience of the code?

e Are any esoteric language features being
used?



Production readiness

e How will we know when this breaks?

e Is there new documentation required by
this change?

e Are there tests that prevent regression?

e Is this change secure?



Naming

e Do names communicate what things do?

e Are the names of things idiomatic to the
language?

e Do names leak implementation details?



Gotchas

e What are the ways in which added or
changed code can break?

e Is this code subject to any common
programming gotchas?

e Is spelling correct and consistent?



Language specific

Is the code well designed?

Is the code idiomatic to the language?
Are new patterns introduced?

Does the code fall into common pitfalls
for the language?



Full checklist at:

github.com/whilelmalloc@/code-review-checklist



Thank you

Johnathan Turner
@whilelmalloco
breaking.computer



