
Creating a Code Review 
Culture

Johnathan Turner
@while1malloc0
breaking.computer



Code review is useful



Code review provides
a means of ensuring code quality



Code review provides
a communication platform



Code review provides
an opportunity to teach



A code review culture 
is useful



Culture

"the set of shared attitudes, values, 

goals, and practices that characterizes an 

institution or organization" - Merriam 

Webster



Agenda:

Examine the practices that contribute to a 

strong code review culture from the 

perspective of...

● Organizations

● Authors

● Reviewers



Organizations



Be intentional about 
your culture



Be intentional about 
your culture

by communicating the culture



Be intentional about 
your culture

by establishing a community of experts



Be intentional about 
your culture

by developing new experts



Be intentional about 
your culture

by training code reviewers



Code authors



Make the reviewer's 
life easier



Make the reviewer's 
life easier

by communicating context





Photo courtesy of Julia 
Evans, @b0rk





Make the reviewer's 
life easier

by making the PR a manageable size



Vertical Slices

● ship the smallest unit of functionality 

meaningful to your users

● round trip through your stack



Make the reviewer's 
life easier
by automating the nits



Make the reviewer's 
life easier

by knowing when to take it offline



Code reviewers



Communicate mutual 
respect



Communicate mutual 
respect

by knowing when to take it offline



Communicate mutual 
respect

by including justification for critique







Communicate mutual 
respect

by engaging with the author as an equal







Communicate mutual 
respect

by being as thorough as the PR needs



Reviewing in passes
Each pass is a theme, and some questions 

to help focus on that theme



Reviewing in passes
Make your own. Make a checklist.



Passes to complete 
every time

If there are red flags on any of these, 
resolve before adding more commentary.



Sizing up

● What is the general shape of the PR?

● Is the PR the right size?



Context

● What is this PR trying to accomplish?

● Why is this PR trying to accomplish 

that?

● Does the PR accomplish what it says?



Relevance

● Is the change made in this PR necessary?

● Does this PR duplicate existing 

functionality?

● Are there others that should be aware of 

this PR?



Passes for more 
in-depth review

Do these for more substantial PRs. Pick 
the ones relevant to the change.



Readability

● Is the change reasonably understandable 

by other humans with little/no prior 

experience of the code?

● Are any esoteric language features being 

used?



Production readiness

● How will we know when this breaks?

● Is there new documentation required by 

this change?

● Are there tests that prevent regression?

● Is this change secure?



Naming

● Do names communicate what things do?

● Are the names of things idiomatic to the 

language?

● Do names leak implementation details?



Gotchas

● What are the ways in which added or 

changed code can break?

● Is this code subject to any common 

programming gotchas?

● Is spelling correct and consistent?



Language specific

● Is the code well designed?

● Is the code idiomatic to the language?

● Are new patterns introduced?

● Does the code fall into common pitfalls 

for the language?



Full checklist at:
github.com/while1malloc0/code-review-checklist



Thank you

Johnathan Turner
@while1malloc0
breaking.computer


