
145
D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

1

ABOUT CONTINUOUS DELIVERY

With Continuous Delivery (CD), teams continuously deliver new

versions of software to production by decreasing the cycle time

between an idea and usable software through the automation

of the entire software delivery process: code commit, build, test,

deployment, and release. CD is enabled through the Deployment

Pipeline, which encompasses a collection of patterns described in

this Refcard.

CD is concerned with “…how all the moving parts fit together:

configuration management, automated testing, continuous

integration and deployment, data management, environment

management, and release management.”

THE DEPLOYMENT PIPELINE

The purpose of the deployment pipeline is threefold:

•	 Visibility: All aspects of the delivery process – building,

testing, deploying, and releasing – are visible to all team

members promoting collaboration.

•	 Feedback: Team members learn of problems as soon as they

occur so that issues are fixed as soon as possible.

•	 Continually Deploy: Through a fully automated process,

you can deploy and release any version of the software to

any environment faster and more frequently.

In the Deployment Pipeline diagram above, all of the patterns

are shown in context. There are some patterns that span multiple

stages of the pipeline, so I chose the stage where it’s most

predominantly used.

BROUGHT TO YOU IN PARTNERSHIP WITH

CONTENTS

öö ABOUT CONTINUOUS DELIVERY

öö THE DEPLOYMENT PIPELINE

öö BENEFITS

öö CONFIGURATION MANAGEMENT

öö CONTINUOUS INTEGRATION (CI)

öö TESTING

öö DEPLOYMENT PIPELINE

öö BUILD AND DEPLOYMENT

SCRIPTING

öö AND MORE...

Get the Ebook

Critical Considerations
for Continuous Delivery
Standardize + automate
software delivery from
beginning to end.

ORIGINAL BY PAUL DUVALL, CTO AND CO-FOUNDER, STELLIGENT

UPDATED BY MICHAEL OLSON, PRINCIPAL PRODUCT MARKETING MANAGER, PUPPET

Continuous Delivery

Patterns and Anti-Patterns

https://quay.io/plans/
https://puppet.com/resources/ebook/critical-considerations-continuous-delivery?ls=Campaigns&lsd=Sponsored&cid=7010f000001yEMt&utm_medium=advertisement&utm_campaign=Q3FY19_WW_All_DEMAND_SPONS_Dzone_critcl-consdr-continue-deliv&utm_source=dzone&utm_content=critical-considerations-continous-delivery

Get to continuous delivery faster with
Puppet Pipelines.
• Enable self-service builds and deployments for your developers

• Get deep visibility into your delivery pipeline & the status of every deployment

• Define continuous delivery pipelines for your cloud-native and traditional
 apps in under 15 minutes

Meet Puppet Pipelines >

Request a demo >

 Learn more at puppet.com

https://puppet.com/products/puppet-pipelines?ls=Campaigns&lsd=Sponsored&cid=7010f000001yETB&utm_medium=advertisement&utm_campaign=Q3FY19_WW_All_DEMAND_SPONS_Dzone_puppet-pipe-product-page&utm_source=dzone&utm_content=pipelines-product-page
http://info.puppet.com/Pipelines-Request-Demo?ls=Campaigns&lsd=Sponsored&cid=7010f000001yET6&utm_medium=advertisement&utm_campaign=Q3FY19_WW_All_DEMAND_SPONS_Dzone_puppet-pipe-demo&utm_source=dzone&utm_content=puppet-pipelines-demo-request
https://puppet.com?ls=campaigns&lsd=sponsored&utm_medium=advertisement&utm_source=dzone&utm_content=homepage
https://puppet.com?ls=campaigns&lsd=sponsored&utm_medium=advertisement&utm_source=dzone&utm_content=homepage

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

3

CD PATTERNS AND ANIT-PATTERNS

BROUGHT TO YOU IN PARTNERSHIP WITH

BENEFITS
•	 Empowering Teams: Because the deployment pipeline is a

pull system, testers, developers, operations, and others can

self-service the application version into an environment

of their choice.

•	 Reducing Errors: Ensuring the correct version,

configuration, database schema, etc. are applied the same

way every time through automation.

•	 Lowering Stress: Through push-button releases to

production and rehearsing deployments, a release becomes

commonplace without the typical stress.

•	 Deployment Flexibility: Instantiate a new environment or

configuration by making a few changes to the automated

delivery system.

•	 Practice Makes Perfect: Through the deployment

pipeline, the final deployment into production is being

rehearsed every single time the software is deployed to any

target environments.

CONFIGURATION MANAGEMENT
Configuration Management is “the process by which all artifacts

relevant to your project, and the relationships between them, are

stored, retrieved, uniquely identified, and modified.” (1)

Note: Each pattern is cited with a number in parentheses that

corresponds to the source in the References section.

CONFIGURABLE THIRD-PARTY SOFTWARE (1)

Pattern
Evaluate and use third-party software that can be

easily configured, deployed, and automated.

Anti-

patterns

Procuring software that cannot be externally

configured. Software without an API or command line

interface that forces teams to use the GUI only.

CONFIGURATION CATALOG (1)

Pattern

Maintain a catalog of all options for each application,

how to change these options and storage locations for

each application. Automatically create this catalog as

part of the build process.

Anti-

patterns

Configuration options are not documented. The catalog

of applications and other assets is “tribal knowledge”.

MAINLINE (3)

Pattern
Minimize merging and keep the number of active code

lines manageable by developing on a mainline.

Anti-

patterns
Multiple branches per project.

MERGE DAILY (1)

Pattern
Changes committed to the mainline are applied to

each branch on at least a daily basis.

Anti-

patterns

Merging every iteration once a week or less often than

once a day.

PROTECTED CONFIGURATION (5), (1)

Pattern

Store configuration information in secure remotely

accessible locations such as a database, directory,

or registry.

Anti-

patterns
Open text passwords and/or single machine or share.

REPOSITORY (3), (1)

Pattern

All source files — executable code, configuration, host

environment, and data — are committed to a version

control repository.

Anti-

patterns

Some files are checked in, others, such as environment

configuration or data changes, are not. Binaries –

which can be recreated through the build and

deployment process – are checked in.

SHORT-LIVED BRANCHES (1)

Pattern
Branches must be short lived – ideally less than a few

days and never more than an iteration.

Anti-

patterns

Branches that last more than an iteration. Branches by

product feature that live past a release.

SINGLE COMMAND ENVIRONMENT (1)

Pattern

Check out the project’s version-control repository

and run a single command to build and deploy the

application to any accessible environment, including

the local development.

http://dzone.com/refcardz

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

4

CD PATTERNS AND ANIT-PATTERNS

BROUGHT TO YOU IN PARTNERSHIP WITH

Anti-

patterns

Forcing the developer to define and configure

environment variables. Making the developer install

numerous tools in order for the build/deployment

to work.

SINGLE PATH TO PRODUCTION (1)

Pattern

Configuration management of the entire system -

source, configuration, environment, and data. Any

change can be tied back to a single revision in the

version-control system.

Anti-
patterns

Parts of the system are not versioned. Inability to get
back to a previously configured software system.

CONTINUOUS INTEGRATION (CI)
BUILD THRESHOLD (5)

Pattern

Fail a build when a project rule is violated – such

as architectural breaches, slow tests, and coding

standard violations.

Anti-

patterns

Manual code reviews. Learning of code quality issues

later in the development cycle.

COMMIT OFTEN (6)

Pattern

Each team member checks in regularly to trunk — at

least once a day but preferably after each task to

trigger the CI system.

Anti-

patterns

Source files are committed less frequently than daily

due to the number of changes from the developer.

CONTINUOUS FEEDBACK (6)

Pattern
Send automated feedback from CI system to all cross-

functional team members.

Anti-

patterns

Notifications are not sent; notifications are ignored;

CI system spams everyone with information they

cannot use.

CONTINUOUS INTEGRATION (6)

Pattern
Building and testing software with every change

committed to a project’s version control repository.

Anti-

patterns

Scheduled builds, nightly builds, building periodically,

building exclusively on developer’s machines, or not

building at all.

STOP THE LINE (5), (1), (4), (12)

Pattern

Fix software delivery errors as soon as they occur; stop

the line. No one checks in on a broken build, as the fix

becomes the highest priority.

Anti-

patterns

Builds stay broken for long periods of time, thus

preventing developers from checking out

functioning code.

INDEPENDENT BUILD (6)

Pattern

Write build scripts that are decoupled from IDEs.

These build scripts are executed by a CI system so that

software is built at every change.

Anti-

patterns

Automated build relies on IDE settings. Builds are

unable to be run from the command line.

VISIBLE DASHBOARDS

Pattern

Provide large visible displays that aggregate

information from your delivery system to provide

high quality feedback to the Cross-Functional Team

in real time.

Anti-

patterns

Email-only alerts or not publicizing the feedback to

the entire team.

TESTING
AUTOMATE TESTS

Pattern

Automate the verification and validation of software

to include unit, component, capacity, functional, and

deployment tests

Anti-

patterns

Manual testing of units, components, deployment,

and other types of tests.

Unit: Automating tests without any dependencies.

Component: Automating tests with dependencies to other

components and heavyweight dependencies such as the database

or file system.

http://dzone.com/refcardz

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

5

CD PATTERNS AND ANIT-PATTERNS

BROUGHT TO YOU IN PARTNERSHIP WITH

Deployment: Automating tests to verify the deployment and

configuration were successful. Sometimes referred to as a “smoke tests.”

Functional: Automating tests to verify the behavior of the software

from a user’s perspective.

Capacity: Automating load and performance testing linear

production conditions.

ISOLATE TEST DATA (1)

Pattern

Use transactions for database-dependent tests

(e.g. component tests) and roll back the transaction

when done. Use a small subset of data to effectively

test behavior.

Anti-

patterns

Using a copy of production data for Commit Stage

tests. Running tests against a shared database.

PARALLEL TESTS (1)

Pattern
Run multiple tests in parallel across hardware

instances to decrease the time in running tests.

Anti-

patterns

Anti-patterns Running tests on one machine or

instance. Running dependent tests that cannot be run

in parallel.

STUB SYSTEMS (1)

Pattern
Use stubs to simulate external systems to reduce

deployment complexity.

Anti-

patterns

Manually installing and configuring interdependent

systems for Commit Stage build and deployment.

DEPLOYMENT PIPELINE

Pattern

A deployment pipeline is an automated

implementation of your application’s build, test,

deploy, and release process.

Anti-

patterns

Deployments require human intervention (other than

approval or clicking a button). Deployments are not

production ready.

VALUE-STREAM MAP (4)

Pattern

Create a map illustrating the process from check in to

the version control system to the software release to

identify process bottlenecks.

Anti-

patterns

Separately defined processes and views of the check-

in to release process.

BUILD AND DEPLOYMENT SCRIPTING
DEPENDENCY MANAGEMENT (5)

Pattern

Centralize all dependent libraries to reduce bloat,

class path problems, and repetition of the same

dependent libraries and transitive dependencies from

project to project.

Anti-

patterns

Multiple copies of the same binary dependencies

in each and every project. Redefining the same

information for each project. This is classpath hell!

COMMON LANGUAGE (1)

Pattern

As a team, agree upon a common scripting language

 — such as Perl, Ruby, or Python — so that any team

member can apply changes to the Single Delivery System.

Anti-

patterns

Each team uses a different language making it difficult

for anyone to modify the delivery system reducing

cross-functional team effectiveness.

EXTERNALIZE CONFIGURATION (5)

Pattern

Changes between environments are captured as

configuration information. All variable values are

externalized from the application configuration into

build/deployment-time properties.

Anti-

patterns

Hardcoding values inside the source code or per

target environment.

FAIL FAST (6)

Pattern

Fail the build as soon as possible. Design scripts

so that processes that usually fail run first. These

processes should be run as part of the commit stage.

Anti-

patterns

Common build mistakes are not uncovered until late

in the deployment process.

FAST BUILDS (6)

Pattern

The commit build provides feedback on common build

problems as quickly as possible — usually in under

10 minutes.

http://dzone.com/refcardz

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

6

CD PATTERNS AND ANIT-PATTERNS

BROUGHT TO YOU IN PARTNERSHIP WITH

Anti-

patterns

Throwing everything into the commit stage process,

such as running every type of automated static

analysis tool or running load tests such that feedback

is delayed.

SCRIPTED DEPLOYMENT (5)

Pattern

All deployment processes can be written in a script,

checked in to the version-control system, and run as

part of the single delivery system.

Anti-

patterns

Deployment documentation is used instead of

automation. Manual deployments or partially

manual deployments.

UNIFIED DEPLOYMENT (5)

Pattern

The same deployment script is used for each

deployment. The protected configuration – per

environment — is variable but managed.

Anti-

patterns

Different deployment script for each target environment

or even for a specific machine. Manual configuration

after deployment for each target environment.

DEPLOYING AND RELEASING APPLICATIONS
BINARY INTEGRITY (5)

Pattern
Build your binaries once, while deploying the binaries

to multiple target environments, as necessary.

Anti-

patterns

Software is built in every stage of the deployment

pipeline.

CANARY RELEASE

Pattern

Release software to production for a small subset

of users (e.g. 10%) to get feedback prior to a

complete rollout.

Anti-

patterns
Software is released to all users at once.

BLUE-GREEN DEPLOYMENTS (1)

Pattern

Deploy software to a non-production environment (call

it blue) while production continues to run. Once it’s

deployed and “warmed up,” switch production (green)

to non-production and blue to green simultaneously.

Anti-

patterns

Production is taken down while the new release is

applied to production instance(s).

DARK LAUNCHING (11)

Pattern
Launch a new application or features when it affects

the least number of users.

Anti-
patterns

Software is deployed regardless of number of active users.

ROLLBACK RELEASE (5)

Pattern
Provide an automated single command rollback of

changes after an unsuccessful deployment.

Anti-
patterns

Manually undoing changes applied in a recent

deployment. Shutting down production instances

while changes are undone.

SELF-SERVICE DEPLOYMENT (1)

Pattern

Any Cross-Functional Team member selects the

version and environment to deploy the latest

working software.

Anti-

patterns

Deployments released to team are at specified intervals

by the “build team.” Testing can only be performed in a

shared state without isolation from others.

INFRASTRUCTURE AND ENVIRONMENTS
AUTOMATE PROVISIONING (1)

Pattern

Automate the process of configuring your

environment to include networks, external services,

and infrastructure.

Anti-

patterns

Configured instances are “works of art” requiring team

members to perform partially or fully manual steps to

provision them.

http://dzone.com/refcardz

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

7

CD PATTERNS AND ANIT-PATTERNS

BROUGHT TO YOU IN PARTNERSHIP WITH

BEHAVIOR-DRIVEN MONITORING (1)

Pattern

Automate tests to verify the behavior of the

infrastructure. Continually run these tests to provide

near real-time alerting.

Anti-

patterns

No real-time alerting or monitoring. System

configuration is written without tests.

IMMUNE SYSTEM (9)

Pattern

Deploy software one instance at a time while

conducting behavior-driven monitoring. If an error

is detected during the incremental deployment, a

rollback release is initiated to revert changes.

Anti-
patterns

Non-incremental deployments without monitoring.

LOCKDOWN ENVIRONMENTS (1)

Pattern

Lock down shared environments from unauthorized

external and internal usage, including operations

staff. All changes are versioned and applied

through automation.

Anti-
patterns

The “Wild West:” any authorized user can access

shared environments and apply manual configuration

changes, putting the environment in an unknown

state and leading to deployment errors.

PRODUCTION-LIKE ENVIRONMENTS (1)

Pattern
Target environments are as similar to production

as possible.

Anti-

patterns

Environments are “production-like” only weeks or

days before a release. Environments are manually

configured and controlled.

TRANSIENT ENVIRONMENTS

Pattern

Utilizing the Automate Provisioning, Scripted

Deployment, and Scripted Database patterns. Any

environment should be capable of terminating and

launching at will.

Anti-

patterns

Environments are fixed to “DEV," "QA,” or other

predetermined environments.

DATA
DATABASE SANDBOX (7)

Pattern

Create a lightweight version of your database – using

the Isolate Test Data pattern. Each developer uses

this lightweight DML to populate his local database

sandboxes to expedite test execution.

Anti-

patterns

Shared database. Developers and testers are unable

to make data changes without it potentially adversely

affecting other team members immediately.

DECOUPLE DATABASE (1)

Pattern

Ensure your application is backward and forward

compatible with your database so you can deploy

each independently.

Anti-

patterns

Application code data are not capable of being

deployed separately.

DATABASE UPGRADE (7)

Pattern
Use scripts to apply incremental changes in each

target environment to a database schema and data.

Anti-

patterns

Manually applying database and data changes in each

target environment.

SCRIPTED DATABASE (7)

Pattern Script all database actions as part of the build process.

Anti-

patterns

Using data export/import to apply data changes.

Manually applying schema and data changes to

the database.

INCREMENTAL DEVELOPMENT
BRANCH BY ABSTRACTION (2)

Pattern

Instead of using version-control branches, create an

abstraction layer that handles both an old and new

implementation. Remove the old implementation.

Anti-

patterns

Branching using the version-control system leading

to branch proliferation and difficult merging.

 Feature branching.

http://dzone.com/refcardz

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

8

CD PATTERNS AND ANIT-PATTERNS

BROUGHT TO YOU IN PARTNERSHIP WITH

TOGGLE FEATURES (10)

Pattern
Deploy new features or services to production but

limit access dynamically for testing purposes.

Anti-

patterns

Waiting until a feature is fully complete before

committing the source code.

COLLABORATION
DELIVERY RETROSPECTIVE (1)

Pattern

For each iteration, hold a retrospective meeting

where everybody on the Cross-Functional Team

discusses how to improve the delivery process for the

next iteration.

Anti-

patterns

Waiting until an error occurs during a deployment

for Dev and Ops to collaborate. Having Dev and Ops

work separately.

CROSS-FUNCTIONAL TEAMS (1)

Pattern

Everybody is responsible for the delivery process. Any

person on the Cross-Functional Team can modify any

part of the delivery system.

Anti-

patterns

Siloed teams: Development, Testing, and Operations

have their own scripts and processes and are not part

of the same team.

Amazon.com has an interesting take on this approach. They call it

“You build it, you run it”. Developers take the software they’ve written

all the way to production.

ROOT-CAUSE ANALYSIS (1)

Pattern

Learn the root cause of a delivery problem by asking

“why” of each answer and symptom until discovering

the root cause.

Anti-

patterns
Accepting the symptom as the root cause of the problem.

CONTINUOUS DELIVERY TOOLS
This is meant to be an illustrative list, not an exhaustive list, to give

you an idea of the types of tools and some of the vendors that help

to enable effective Continuous Delivery.

CATEGORY EXAMPLE TOOLS

Product Planning
Atlassian JIRA, Jama, CA Rally, Aha!,

CollabNet VersionOne, Pivotal

Source Code

Management

GitHub, GitLab, Atlassian Bitbucket,

Microsoft Team Foundation Server,

Perforce, Subversion

Continuous Integration

Jenkins, CircleCI, CloudBees, GitLab,

Atlassian Bamboo, Travis CI, JetBrains

TeamCity, Microsoft Azure Pipelines,

Puppet Pipelines

Build
Ant, Gant, Gradle, make, Maven, Rake,

Fabric, Func

Testing

Twist , AntUnit, Cucumber, DbUnit,

webrat, easyb, Fitnesse, JMeter, JUnit,

NBehave, SoapUI, Selenium, RSpec,

SauceLabs, Perfecto

Artifact Repository
JFrog Artifactory, Ivy, Archiva,

Sonatype Nexus, Bundler

Continuous Delivery &

Release Automation

Puppet Pipelines, AWS CodePipeline,

CA Automic, Electric Cloud, IBM

UrbanCode, Octopus Deploy,

Spinnaker, XebiaLabs

Infrastructure

Automation
Puppet Enterprise, Chef, Ansible

Cloud Provisioning &

Orchestration
HashiCorp Terraform, Puppet, Ansible

Container Management

System & Application

Platform-as-a-Service

Kubernetes, Mesos, HashiCorp

Nomad, Docker Swarm,

CloudFoundry

Container Registry

Puppet Container Registry, Docker

Hub, AWS, Microsoft Azure, Google

Cloud, JFrog, Red Hat Quay, Harbor

Application

Performance Monitoring

New Relic, AppDynamics, Datadog,

Splunk, Dynatrace

http://dzone.com/refcardz

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

9

CD PATTERNS AND ANIT-PATTERNS

BROUGHT TO YOU IN PARTNERSHIP WITH

Software Delivery

Performance

Management

Puppet Insights, CloudBees

DevOptics, XebiaLabs

Collaboration Slack, JIRA, Trello

REFERENCES

1.	 Jez Humble and David Farley, “Continuous Delivery: Reliable

Software Releases through Build, Test, and Deployment

Automation”, Addison Wesley Professional, 2010

2.	 Paul Hammant and continuousdelivery.com

3.	 Stephen P. Berczuk and Brad Appleton, “Software

Configuration Management Patterns.”, Addison Wesley

Professional, 2003

4.	 Mary and Tom Poppendieck, “Leading Lean Software

Development”, Addison Wesley, 2009

5.	 Paul M. Duvall, “Continuous integration. Patterns and

Antipatterns”, DZone refcard #84, 2010 bit.ly/l8rfVS

6.	 Paul M. Duvall, “Continuous integration. Improving Software

Quality and Reducing Risk”, Addison Wesley, 2007

7.	 Scott W. Ambler and Pramodkumar J. Saladage,

“Refactoring Databases. Evolutionary Database Design”,

Addison Wesley, 2006.

8.	 Paul M. Duvall, IBM developerWorks series “Automation for

the people” ibm.co/iwwvPX

9.	 IMVU: bit.ly/jhqP5f

10.	 Martin Fowler and Facebook: on.fb.me/miBrOM

11.	 Facebook Engineering: on.fb.me/miBrOM

12.	 Paul Julius, Enterprise Continuous Integration Maturity Model,

bit.ly/m7h5vC

DZone, Inc.

150 Preston Executive Dr. Cary, NC 27513

888.678.0399 919.678.0300

Copyright © 2018 DZone, Inc. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

DZone communities deliver over 6 million pages each

month to more than 3.3 million software developers,

architects and decision makers. DZone offers something for

everyone, including news, tutorials, cheat sheets, research

guides, feature articles, source code and more. "DZone is a

developer’s dream," says PC Magazine.

Written by Michael Olson , Principal Product Marketing Manager, Puppet

Michael Olson is a Principal Product Marketing Manager at Puppet, where he’s responsible for product launches and

go-to-market strategy for Puppet's products. When he’s not working closely with the product teams at Puppet, you

can find Michael traveling around the world to advise organizations about DevOps and Continuous Delivery practices

and running around on the soccer field.

http://dzone.com/refcardz
http://www.continuousdelivery.com
http://www.continuousdelivery.com
http://bit.ly/l8rfVS
http://ibm.co/iwwvPX
http://bit.ly/jhqP5f
http://on.fb.me/miBrOM
http://on.fb.me/miBrOM
http://bit.ly/m7h5vC
http://www.dzone.com

